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|. Motivation:

records & their first-passage
statistics as a data analysis tool



Extreme value statistics
New frontier in nonequilibrium statistical physics

® Brownian motion Comtet, Majumdar, Krug, Redner
® Surface gl"OWth Spohn, Halpin-Healy, Majumdar, Schehr
® Transport Mallick, Krapivsky, Derrida, Lebowitz, Speer
® Population dynamics Kameney, Meerson, Doering, Nelson
® Climate Bunde, Havlin, Krug, Wergen, Redner
® Earthquakes Davidesn, Sornette, Newman, Turcotte, EB

® Finance Bouchaud, Stanley, Majumdar



Record & Running Record
L et

® Record = largest variable in a series
Xy = max(x1,22,...,TN)
® Running record = largest variable to date
X1 < Xo <o S XN

® |ndependent and identically distributed variables

d =1
/O v p(2) Feller 68

. . Gumble 04
Statistics of extreme values Ellis 05




Average number of running records

Sanman

® Probability that Nth variable sets a record

PN — N
® Average number of records = harmonic number
I 1 1
My=1+4 42+ +—
N 2 "3 TN

® Grows logarithmically with number of variables

My ~InN+~  ~v=0.577215

Behavior is independent of distribution function
Number of records is quite small




Clustering of massive earthquakes!?
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Are massive earthquakes correlated!?



Records in inter-event time statistics

=
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‘{ t1 t2

4

Count number of running records in N consecutive events

Oy

8- — M>5 (37,000 events)
- — M>7 (1,770 events)
— 1+1/2+1/3+..+1/N

1| attribute
7 | deviation to
aftershocks

records indicate inter-event times uncorrelated
Massive earthquakes are random  eB s Krapivsky PRE 13



Inter-Event time statistics

EB, Daub, Johnson, GRL 13

® Measure time between Moo
two successive events 0.8 ~ M=70(AR) ;

— Random Distribution
® Heavily used in 0 6:_
earthquake analysis  p(t) |

L. 4r
® Random distribution: 0 :

both distribution of 02k
recurrence times, and

cumulative distribution
are exponential

p(t) =7"te T P(t) = /t T dsP(s) = et

Very good agreement with random distribution!



First-Passage Processes
. —

o o

Process by which a fluctuating quantity reaches a threshold for
the first time

First-passage probability: for the random variable to reach the
threshold as a function of time.

Total probability: that threshold is ever reached. May or
may not equal 1

First-passage time: the mean duration of the first-passage
process. Can be finite or infinite

S. Redner, A Guide to First-Passage Processes, 200 |



Marathon world record

Year |Athlete Country Record Improvement
2002 [Khalid Khannuchi [USA 2:05:38

2003 (Paul Tergat Kenya 2:04.55 0:43
2007 |Haile Gebrsellasie |Ethiopia 2:04:26 0:29
2008 |Haile Gebrsellasie |Ethiopia 2:03:59 0:27
2011 [Patrick Mackau Kenya 2:03:38 0:21
2013 |Wilson Kipsang  [Kenya 2:03:23 0:15

Incremental sequence of records

every record improves upon previous
record by yet smaller amount

Are incremental sequences of records common!

source: wikipedia



Incremental Records

Ya 4
Ys !

8

A L4

Y1

Incremental sequence of records

every record improves upon previous
record by yet smaller amount

random variable = {0.4,0.4,0.6,0.7,0.5,0.1}
latest record = {0.4,0.4,0.6,0.7,0.7,0.7} -
latest increment = {0.4,0.4,0.2,0.1,0.1,0.1} .

/

What is the probability all records are incremental?



Probability all records are incremental

0

10" o

— N3 1
o—o Earthquake data -

10
1

II1 | | I I I | 2 | IIIIIII3 3 e

N 100 10 10° 10° 10" 10° 10° 10’ 10

Sy ~ N7 v =0.31762101

29"(2) + (2 —v)g'(2) + € 7g(2) = 0

o—o simulation
N

-0.317621

N

Power law decay with nontrivial exponent

Problem is parameter-free

Miller & EB JSTAT |3

8



ll. Ordered records:
uncorrelated random variables



Ordered Records o

X
n
Y

® Motivation: temperature records: |

Record high increasing each year ‘ h ‘ I | I‘
(I

® Two sequences of random variable "
{X17X27°°°7XN} and {Y17Y27°°°7YN}

® |ndependent and identically distributed variables

® Two corresponding sequences of records

r, = max{ Xy, Xs,..., X} and vy, =max{Y7,Ys,...,Y,}

® Probability Sy records maintain perfect order

x1>1y1 and x9>ys --- and xny > YN



Two Sequences

0‘ oo*

® Survival probability obeys closed recursion equation

1
— _ 1
SN = SN_1 ( 2N>

® Solution is immediate
2N\
- ()
® [arge-N: Power-law decay with rational exponent

SN ~ g /2 NTL/2

Universal behavior: independent of parent distribution!




Ordered Random Variables

Probability Py variables are always ordered

X1>Y and Xo>Y, .- and Xy > Yn

Exponential decay

Ordered records far more likely than ordered variables!
Variables are uncorrelated

Records are strongly correlated: each record
“remembers’ entire preceding sequence

Ordered records better suited for data analysis



Three sequences

BN :h< :N

‘I I |I\ I‘I ‘II I ‘I| |‘I |“ 1l “I ]
n

o U ah b —To

— e e e =
SO0

> simulation
— theory

100 10" 10° 10’ 11(\)14 10° 10° 10" 10

® Third sequence of random variables

Ty > Yp > Zn

n=12...,N

® Probability Sy records maintain perfect order

® Power-law decay with nontrivial exponent?

Sy~ N7

with o = 1.3029



Rank of median record

® leader
®@median 00000000000 O0OCOO
® laggard —

J
® Closed equations for survival probability not feasible

® Focus on rank of the median record
® Rank of the trailing record irrelevant

® |oint probability Pn; that (i) records are ordered and
(ii) rank of the median record equals ]

® |oint probability gives the survival probability

N
Sy =>» Py,
j=1



Closed Recursion Equations

—
J
* Closed recursion equations for joint probability feasible

PN+1_:3N+2—j3N+1—j3N—j -

) 3N +3 3N+2 3N +1
SBN+2—j3N+1—35

3N +3 3N +2 3N +1

. N+1
3N +2—
3N — k)P
T BNT3BN+2)BN + 1) Z< JEnk

k=)

PN -1

3N +2— s

N (BN +3)(3N + 2)(3N + 1) gé; k PN.k—1
* The survival probability for small N

N ASA[ (va)!fbv
1| 3 1
29
* | %, >
3 90720 18 388
4| 5 19,655 17257600
179 828 183
5 | sramacreig | 35965636600




Key Observation

0.5

0.4

Sy 02f

Rank of median record j and N become uncorrelated!



Asymptotic Analysis
Rank of median record j and N become uncorrelated!
Pn,;i>~Snyp; as N — o0

Assume power law decay for the survival probability
Sy ~N°

The asymptotic rank distribution is normalized

Zp]—l

Rank distribution obeys a much S|mpler recursion
op; = (J+1)pj — §pj—1 3 Zpk

Scaling exponent o is an eigenvalue



EB & Krapivsky PRE 15

The Rank Distribution

First-order differential equation for generating function

3-9TDpe) (- Y) =1 ro-Tae

dz l—2 =z 1 -z =1

Solution

e \/é - z (3 - Z)" /0 (1 _d5>3/z = _u?:m

Behavior near z=3 gives tail of the distribution
p; Nja—1/23—j

Behavior near z=1 gives the scaling exponent

2F1(—%,%—0;%—0;—%) — —> o = 1.302931...

Three sequences: scaling exponent is nontrivial



Multiple Sequences

® Probability Sy that m records maintain perfect order

® Expect power-law decay with m-dependent exponent
6' ! | | | | | ]

5 *
SN m~ N—Um 4_ -
o3f -
® | ower and upper bounds ’ .
11 1 1 ‘
O S m T O-m S 1 —I_ ~ _I_ o _I_ e —I— T - | | | | | | .
2 3 m N2 3 4 5 6 7 8

® Exponent grows linearly with number of sequences
(up to a possible logarithmic correction)

Ty 2 M

In general, scaling exponent is nontrivial



Family of Ordering Exponents

*One sequence always in the lead: | >rest
Ay ~ N7%m =1—- —

m

* Two sequences always in the lead: |>2>rest

2

BNNN_Bm 2F1(— ! 7m

m—1 m —

LB

2m — 3

1
negt)

* Three sequences always in the lead: I>2>3>rest

B

CDOT»-IkOOl\Dr—\S

1/2
1.302931
1.56479
1.69144
1.76164

1.302931
2.299
2.047
2.630

2.205
3.24
3.93




Summary |

Probability multiple sequences of records are ordered
Uncorrelated random variables

Survival probability independent of parent distribution
Power-law decay with nontrivial exponent

Exact solution for three sequences
Scaling exponent grows linearly with number of sequences

Key to solution: statistics of median record becomes
independent of the sequence length (large N limit)

Scaling methods allow us to tackle combinatorics



lll. Ordered records:
correlated random variables



Brownian Positions Brownian Records




First-Passage Kinetics: Brownian Positions

Probability two Brownian particle do not meet

U A

® Universal probability , >»

dersen 53
2t
Sy = ( ) 271
t

® Asymptotic behavior reler s

(AN t_1/2

Behavior holds for Levy flights, different mobilities, etc

Universal first-passage exponent

S. Redner, A guide to First-Passage Processes 200 |



First-Passage Kinetics: Brownian Records

Probability running records remain ordered

S ~t P

® simulation
t-1/4

B = 0.2503 -

- 0.0005

Is /4 exact! |Is exponent universal?



mi1 > mo 1if and only if my > x5

m,




From four variables to three

Four variables: two positions, two records

my1 >x1 and me > To
The two records must always be ordered
my > Mo
Key observation: trailing record is irrelevant!
mi1 > mo if and only if my > x5
Three variables: two positions, one record

mi1 >x1 and mq > To



From three variables to two

Introduce two distances from the record

u=mq1—2x1 and v =mq1 — To

Both distances undergo Brownian motion
Op(u,v,t)
Ot

Boundary conditions: (i) absorption (ii) advection

B Op Op
joro i (22

Probability records remain ordered

P(t) = /OOO/OOO du dv p(u, v, t)

= DV?p(u, v,t)

=0

u=0




Diffusion in corner geometry




“Backward” evolution

® Study evolution as function of initial conditions

P = P(UO, Vo, t)
® Obeys diffusion equation

5’P(u0, Vo, t)
Ot
® Boundary conditions: (i) absorption (ii) advection

oFP OP
vo=0 . and <8UQ | 6@0)

® Advection boundary condition is conjugate!

— DVZP(U(), Vo, t)

P =0

U()ZO




Solution

Use polar coordinates

Vo
r=q/u?2+v2 and 6 = arctan —
0 0 ™

Laplace operator
0° 10 1 0°

2— | |
v COr2  ror 12 962

Boundary conditions: (i) absorption (ii) advection

oP 0P
P — p—
9o =0 and (T or 8«9) |9:7r/2 !

Dimensional analysis + power law + separable form

P(r,0,1) ~ (Z)Bf(ﬁ)




Selection of exponent

Exponent related to eigenvalue of angular part of Laplacian
17(0) + (28)*£(0) = 0
Absorbing boundary condition selects solution
£(6) = sin (266)
Advection boundary condition selects exponent

tan (Bm) =1

First-passage probability

EB & Krapivsky PRL 14



General Diffusivities

ben Avraham

Particles have diffusion constants D| and D Leyvraz 88

x1,To) — (r1,x2) with (x1,29) = ( : )

Condition on records involves ratio of mobilities

— ™ ™
D2 1 2

Analysis straightforward to repeat

First-passage exponent: nonuniversal, mobility-dependent

1 | Do
_ — t o
15 - arctan D,



Numerical verification

® simulation
— theory

D,/D,

perfect agreement

| | | | | | | | | | | | | | | |
1 1.5 2 2.5



Properties

Depends on ratio of diffusion constants

B(D1,D2) =5 <&>

Do
Bounds: involve one immobile particle
1
B(0) = 5 B(o0) =0

Rational for special values of diffusion constants

p(1/3)=1/3  B(1)=1/4  ((3) =1/6

Duality: between “fast chasing slow” and “slow chasing fast”

(oe) 2 (5:) =3

Alternating kinetics: slow-fast-slow-fast



Multiple particles

® Probability n Brownian positions are perfectly ordered

P o~ ¢ %n o, = n(n4_ 1) Fisher & Huse 88
® Records perfectly ordered T "
My > Mo > Mg > -+ > My, 2 | 1/4 1/4
® |n general, power-law decay i (1)?23 (1):?;;465
S g 5 | 1.60 | 1.62
6 | 2.01 2.10

Uncorrelated variables provide an excellent approximation
Suggests some record statistics can be robust



Summary |l

First-passage kinetics of extremes in Brownian motion

Problem reduces to diffusion in a two-dimensional
corner with mixed boundary conditions

First-passage exponent obtained analytically

Exponent is continuously varying function of mobilities
Relaxation is generally slower compared with positions
Open questions: multiple particles, higher dimensions

Why do uncorrelated variables represent an excellent
approximation!?



First-passage statistics of
extreme values

Survival probabilities decay as power law
First-passage exponents are nontrivial
Theoretical approach: differs from question to question

Concepts of nonequilibrium statistical physics powerful:
scaling, correlations, large system-size limit

Many, many open questions

Ordered records as a data analysis tool
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